Cleaned up and multithreaded DCT functions

This commit is contained in:
G2-Games 2024-07-28 00:27:38 -05:00
parent 31338a2c10
commit cf6d32e1aa
2 changed files with 152 additions and 45 deletions

View file

@ -1,4 +1,6 @@
use std::f32::consts::{PI, SQRT_2}; use std::{f32::consts::{PI, SQRT_2}, sync::{Arc, Mutex}};
use rayon::iter::{IndexedParallelIterator, IntoParallelIterator, IntoParallelRefIterator, ParallelIterator};
use crate::header::ColorFormat; use crate::header::ColorFormat;
@ -89,7 +91,7 @@ pub fn idct(input: &[f32], width: usize, height: usize) -> Vec<u8> {
} }
} }
output.push((tmp_sum + 128.0) as u8) output.push((tmp_sum + 128.0).round() as u8)
} }
} }
@ -138,21 +140,22 @@ pub fn dequantize(input: &[i16], quant_matrix: [u16; 64]) -> Vec<f32> {
/// Take in an image encoded in some [`ColorFormat`] and perform DCT on it, /// Take in an image encoded in some [`ColorFormat`] and perform DCT on it,
/// returning the modified data. This function also pads the image dimensions /// returning the modified data. This function also pads the image dimensions
/// to a multiple of 8, which must be reversed when decoding. /// to a multiple of 8, which must be reversed when decoding.
pub fn dct_compress(input: &[u8], width: u32, height: u32, parameters: DctParameters) -> DctImage { pub fn dct_compress(input: &[u8], parameters: DctParameters) -> DctImage {
let new_width = width as usize + (8 - width % 8) as usize; let new_width = parameters.width + (8 - parameters.width % 8);
let new_height = height as usize + (8 - height % 8) as usize; let new_height = parameters.height + (8 - parameters.width % 8);
let quantization_matrix = quantization_matrix(parameters.quality);
let mut dct_image = Vec::new(); let mut dct_image = Vec::with_capacity(input.len());
dbg!(input.len()); let channels: Vec<Vec<i16>> = (0..parameters.format.channels()).into_par_iter().map(|ch| {
for ch in 0..parameters.format.channels() {
let channel: Vec<u8> = input.iter() let channel: Vec<u8> = input.iter()
.skip(ch as usize) .skip(ch as usize)
.step_by(parameters.format.channels() as usize) .step_by(parameters.format.channels() as usize)
.copied() .copied()
.collect(); .collect();
dbg!(channel.len()); println!("Encoding channel {ch}");
let mut img_2d: Vec<Vec<u8>> = channel.windows(width as usize).step_by(width as usize).map(|r| r.to_vec()).collect(); // Create 2d array of the channel for ease of processing
let mut img_2d: Vec<Vec<u8>> = channel.windows(parameters.width).step_by(parameters.width).map(|r| r.to_vec()).collect();
img_2d.iter_mut().for_each(|r| r.resize(new_width, 0)); img_2d.iter_mut().for_each(|r| r.resize(new_width, 0));
img_2d.resize(new_height, vec![0u8; new_width]); img_2d.resize(new_height, vec![0u8; new_width]);
@ -167,13 +170,16 @@ pub fn dct_compress(input: &[u8], width: u32, height: u32, parameters: DctParame
// Perform the DCT on the image section // Perform the DCT on the image section
let dct: Vec<f32> = dct(&chunk, 8, 8); let dct: Vec<f32> = dct(&chunk, 8, 8);
let quantzied_dct = quantize(&dct, quantization_matrix(parameters.quality)); let quantized_dct = quantize(&dct, quantization_matrix);
dct_channel.extend_from_slice(&quantzied_dct); dct_channel.extend_from_slice(&quantized_dct);
} }
} }
dct_image.push(dct_channel);
} dct_channel
}).collect();
channels.into_iter().for_each(|c| dct_image.push(c));
DctImage { DctImage {
channels: dct_image, channels: dct_image,
@ -182,6 +188,51 @@ pub fn dct_compress(input: &[u8], width: u32, height: u32, parameters: DctParame
} }
} }
/// Take in
pub fn dct_decompress(input: &[Vec<i16>], parameters: DctParameters) -> Vec<u8> {
// Precalculate the quantization matrix
let quantization_matrix = quantization_matrix(parameters.quality);
// Number of bytes per row of chunks
let chunk_row = parameters.width * 8;
let final_img = Arc::new(Mutex::new(vec![0u8; (parameters.width * parameters.height) * 4]));
input.par_iter().enumerate().for_each(|(chan_num, channel)| {
println!("Decoding channel {chan_num}");
let mut decoded_image = vec![];
for (i, chunk) in channel.windows(64).step_by(64).enumerate() {
// Allocate a new row of the image for every new row of chunks
if i % (parameters.width / 8) == 0 {
decoded_image.extend_from_slice(&vec![0u8; chunk_row]);
}
let dequantized_dct = dequantize(chunk, quantization_matrix);
let original = idct(&dequantized_dct, 8, 8);
// Write rows of blocks
let start_x = (i * 8) % parameters.width;
let start_y = ((i * 8) / parameters.width) * 8;
let start = start_x + (start_y * parameters.width);
for row_num in 0..8 {
let row_offset = row_num * parameters.width;
let row_data = &original[row_num * 8..(row_num * 8) + 8];
decoded_image[start + row_offset..start + row_offset + 8].copy_from_slice(row_data);
}
}
final_img.lock().unwrap().iter_mut()
.skip(chan_num)
.step_by(4)
.zip(decoded_image.iter())
.for_each(|(c, n)| *c = *n);
});
Arc::try_unwrap(final_img).unwrap().into_inner().unwrap()
}
/// Parameters to pass to the [`dct_compress`] function. /// Parameters to pass to the [`dct_compress`] function.
#[derive(Debug, Clone, Copy)] #[derive(Debug, Clone, Copy)]
pub struct DctParameters { pub struct DctParameters {
@ -194,13 +245,21 @@ pub struct DctParameters {
/// Since DCT can only process one channel at a time, knowing the format /// Since DCT can only process one channel at a time, knowing the format
/// is important. /// is important.
pub format: ColorFormat, pub format: ColorFormat,
/// Width of the input image
pub width: usize,
/// Height of the input image
pub height: usize,
} }
impl Default for DctParameters { impl Default for DctParameters {
fn default() -> Self { fn default() -> Self {
Self { Self {
quality: 80, quality: 80,
format: ColorFormat::Rgba32 format: ColorFormat::Rgba32,
width: 0,
height: 0,
} }
} }
} }
@ -222,7 +281,53 @@ mod tests {
use super::*; use super::*;
#[test] #[test]
fn quantization_matrix_q80() { fn run_dct() {
let result = dct(
&[
6, 4, 4, 6, 10, 16, 20, 24,
5, 5, 6, 8, 10, 23, 24, 22,
6, 5, 6, 10, 16, 23, 28, 22,
6, 7, 9, 12, 20, 35, 32, 25,
7, 9, 15, 22, 27, 44, 41, 31,
10, 14, 22, 26, 32, 42, 45, 37,
20, 26, 31, 35, 41, 48, 48, 40,
29, 37, 38, 39, 45, 40, 41, 40
],
8,
8
);
assert_eq!(
result,
[-839.37494, -66.86765, -5.8187184, 12.086508, -12.37503, 3.744713, 0.65127736, -1.4721011, -78.0333, -0.8744621, 14.815389, 1.9330482, 2.5059338, 1.8356638, 2.3859768, -2.1098928, 12.556393, 17.50461, 3.9685955, -8.910822, 6.42554, -4.6883383, -2.441934, 2.3615432, -1.4457717, -11.20282, -0.6175499, -0.24921608, -1.3332539, 2.59305, 2.0981073, -1.1885407, 0.6249629, 4.1257324, 0.21936417, 0.5029774, 1.625, -2.7071304, 0.8562317, -0.67780924, -0.47140676, -1.1953268, 0.7938299, 1.343049, 0.4363842, -0.75078535, -0.3206334, 1.0701582, -3.9833553, 2.071165, 1.5580511, -2.9571223, 3.426909, -0.45216227, -2.2185893, 3.0024266, 2.9214313, -0.85989547, -1.5205104, 0.891371, 0.9026685, 1.3169396, -1.0526512, -0.12552339]
);
}
#[test]
fn run_idct() {
let result = idct(
&[-839.37494, -66.86765, -5.8187184, 12.086508, -12.37503, 3.744713, 0.65127736, -1.4721011, -78.0333, -0.8744621, 14.815389, 1.9330482, 2.5059338, 1.8356638, 2.3859768, -2.1098928, 12.556393, 17.50461, 3.9685955, -8.910822, 6.42554, -4.6883383, -2.441934, 2.3615432, -1.4457717, -11.20282, -0.6175499, -0.24921608, -1.3332539, 2.59305, 2.0981073, -1.1885407, 0.6249629, 4.1257324, 0.21936417, 0.5029774, 1.625, -2.7071304, 0.8562317, -0.67780924, -0.47140676, -1.1953268, 0.7938299, 1.343049, 0.4363842, -0.75078535, -0.3206334, 1.0701582, -3.9833553, 2.071165, 1.5580511, -2.9571223, 3.426909, -0.45216227, -2.2185893, 3.0024266, 2.9214313, -0.85989547, -1.5205104, 0.891371, 0.9026685, 1.3169396, -1.0526512, -0.12552339],
8,
8
);
assert_eq!(
result,
[
6, 4, 4, 6, 10, 16, 20, 24,
5, 5, 6, 8, 10, 23, 24, 22,
6, 5, 6, 10, 16, 23, 28, 22,
6, 7, 9, 12, 20, 35, 32, 25,
7, 9, 15, 22, 27, 44, 41, 31,
10, 14, 22, 26, 32, 42, 45, 37,
20, 26, 31, 35, 41, 48, 48, 40,
29, 37, 38, 39, 45, 40, 41, 40
]
);
}
#[test]
fn create_quantization_matrix_q80() {
let result = quantization_matrix(80); let result = quantization_matrix(80);
assert_eq!( assert_eq!(
@ -241,7 +346,7 @@ mod tests {
} }
#[test] #[test]
fn quantization_matrix_q100() { fn create_quantization_matrix_q100() {
let result = quantization_matrix(100); let result = quantization_matrix(100);
assert_eq!( assert_eq!(

View file

@ -7,52 +7,54 @@ mod header;
mod operations; mod operations;
pub mod picture; pub mod picture;
use header::ColorFormat; use std::{fs::File, io::Write, time::Instant};
use compression::dct::{dct_compress, dequantize, idct, quantization_matrix, DctParameters};
use image::{GenericImage, GrayImage, Luma, RgbaImage}; use header::ColorFormat;
use compression::{dct::{dct_compress, dct_decompress, DctParameters}, lossless};
use image::RgbaImage;
use picture::DangoPicture;
fn main() { fn main() {
let input = image::open("shit.png").unwrap().to_rgba8(); let input = image::open("kirara_motorbike.jpg").unwrap().to_rgba8();
input.save("original.png").unwrap(); input.save("original.png").unwrap();
let dct_output = File::create("test.dpf").unwrap();
DangoPicture::from_raw(input.width(), input.height(), &input.as_raw().clone()).encode(&dct_output);
let timer = Instant::now();
let dct_result = dct_compress( let dct_result = dct_compress(
input.as_raw(), input.as_raw(),
input.width(),
input.height(),
DctParameters { DctParameters {
quality: 30, quality: 30,
format: ColorFormat::Rgba32, format: ColorFormat::Rgba32,
width: input.width() as usize,
height: input.height() as usize,
} }
); );
println!("Encoding took {}ms", timer.elapsed().as_millis());
let mut final_img = vec![0u8; (dct_result.width as usize * dct_result.height as usize) * 4]; let mut dct_output = File::create("test-dct.dpf").unwrap();
for (chan_num, channel) in dct_result.channels.iter().enumerate() { let compressed_dct = lossless::compress(&dct_result.channels.concat().iter().flat_map(|x| x.to_le_bytes()).collect::<Vec<u8>>());
let mut decoded_image = GrayImage::new(dct_result.width, dct_result.height); dct_output.write_all(&compressed_dct.0).unwrap();
for (i, chunk) in channel.windows(64).step_by(64).enumerate() {
let dequantized_dct = dequantize(chunk, quantization_matrix(30));
let original = idct(&dequantized_dct, 8, 8);
// Write rows of blocks let timer = Instant::now();
let start_x = (i * 8) % dct_result.width as usize; let decoded_dct = dct_decompress(
let start_y = ((i * 8) / dct_result.width as usize) * 8; &dct_result.channels,
DctParameters {
quality: 30,
format: ColorFormat::Rgba32,
width: dct_result.width as usize,
height: dct_result.height as usize
}
);
println!("Decoding took {}ms", timer.elapsed().as_millis());
let mut sub = decoded_image.sub_image(start_x as u32, start_y as u32, 8, 8);
for y in 0..8 {
for x in 0..8 {
let value = original[(y as usize * 8) + x as usize];
sub.put_pixel(x, y, Luma([value]))
}
}
}
final_img.iter_mut().skip(chan_num).step_by(4).zip(decoded_image.iter()).for_each(|(c, n)| *c = *n);
decoded_image.save(format!("dct-{chan_num}.png")).unwrap();
}
RgbaImage::from_raw( RgbaImage::from_raw(
dct_result.width, dct_result.width,
dct_result.height, dct_result.height,
final_img decoded_dct
).unwrap().save("dct.png").unwrap(); ).unwrap().save("dct-final.png").unwrap();
/* /*
// Reverse the DCT // Reverse the DCT